

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Example Workflow for Contributing

(provided by @spytheman [https://github.com/spytheman])

(If you don’t already have a GitHub account, please create one. Your GitHub
username will be referred to later as ‘YOUR_GITHUB_USERNAME’. Change it
accordingly in the steps below.)

	Fork https://github.com/vlang/vsl using GitHub’s interface to your own account.
Let’s say that the forked repository is at
https://github.com/YOUR_GITHUB_USERNAME/vsl .

	Clone the main vsl repository https://github.com/vlang/vsl to a local folder on
your computer (git clone https://github.com/vlang/vsl)

	cd vsl

	git remote add pullrequest https://github.com/YOUR_GITHUB_USERNAME/vsl
NB: the remote named pullrequest should point to YOUR own forked repo, not the
main v repository! After this, your local cloned repository is prepared for
making pullrequests, and you can just do normal git operations such as:
git pull git status and so on.

	When finished with a feature/bugfix/change, you can:
git checkout -b fix_alabala

	git push pullrequest # (NOTE: the pullrequest remote was setup on step 4)

	On GitHub’s web interface, go to: https://github.com/vlang/vsl/pulls

Here the UI shows a dialog with a button to make a new pull request based on
the new pushed branch.
(Example dialog: https://url4e.com/gyazo/images/364edc04.png)

	After making your pullrequest (aka, PR), you can continue to work on the
branch fix_alabala … just do again git push pullrequest when you have more
commits.

	If there are merge conflicts, or a branch lags too much behind VSL’s main,
you can do the following:

	git pull --rebase origin main # solve conflicts and do
git rebase --continue

	git push pullrequest -f # this will overwrite your current remote branch
with the updated version of your changes.

The point of doing the above steps, is to never directly push to the main VSL
repository, only to your own fork. Since your local main branch tracks the
main VSL repository’s main, then git checkout main, as well as
git pull --rebase origin main will continue to work as expected
(these are actually used by v up) and git can always do it cleanly.

Git is very flexible, so there are other ways to accomplish the same thing.
See the GitHub flow [https://guides.github.com/introduction/git-handbook/#github]
for more information.

Using Github’s hub CLI tool

You can download the hub tool from https://hub.github.com/ . Using
hub, you will not need to go through the (sometimes) slow website
to make PRs. Most remote operations can be done through the hub CLI
command.

NB: You still need to have a GitHub account.

Preparation

(steps 1..3 need to be done just once):

	hub clone vlang/vsl my_vsl

	cd my_vsl

	hub fork --remote-name pullrequest

	git checkout -b my_cool_feature # Step 4 is better done once per each new
feature/bugfix that you make.

Improve VSL by making commits

	git commit -am "math: add a new function copysign"

Testing your commits locally

You can test locally whether your changes have not broken something by
running: ./bin/test. See README.md for more details.

Publishing your commits to GitHub

	git push pullrequest

Making a PR with hub

(so that your changes can be merged to the main VSL repository)

	hub pull-request

Optionally, you can track the status of your PR CI tests with:

	hub ci-status --verbose

Fixing failing tests

If everything is OK, after some minutes, the CI tests should pass for
all platforms. If not, visit the URLs for the failing CI jobs, see
which tests have failed and then fix them by making more changes. Just use
git push pullrequest to publish your changes. The CI tests will
run with your updated code. Use hub ci-status --verbose to monitor
their status.

 <no title>

 Constants

Constants

This module provides a collection of physical constants in the MKSA system.

The constants are defined in the module files themselves, and are not imported by default.

Usage

import vsl.consts

println(consts.mksa_speed_of_light)

Fundamental Constants

consts.mksa_speed_of_light

The speed of light in vacuum.

consts.mksa_vacuum_permeability

The permeability of free space, μ_0. This constant is defined
in the MKSA system only.

consts.mksa_vacuum_permittivity

The permittivity of free space, \epsilon_0. This constant is
defined in the MKSA system only.

consts.mksa_plancks_constant_h

Planck’s constant, h.

consts.mksa_plancks_constant_hbar

Planck’s constant divided by 2\pi, \hbar.

consts.num_avogadro

Avogadro’s number, N_a.

consts.mksa_faraday

The molar charge of 1 Faraday.

consts.mksa_boltzmann

The Boltzmann constant, k.

consts.mksa_molar_gas

The molar gas constant, R_0.

consts.mksa_standard_gas_volume

The standard gas volume, V_0.

consts.mksa_stefan_boltzmann_constant

The Stefan-Boltzmann radiation constant, \sigma.

consts.mksa_gauss

The magnetic field of 1 Gauss.

Astronomy and Astrophysics

consts.mksa_astronomical_unit

The length of 1 astronomical unit (mean earth-sun distance), au.

consts.mksa_gravitational_constant

The gravitational constant, G.

consts.mksa_light_year

The distance of 1 light-year, ly.

consts.mksa_parsec

The distance of 1 parsec, pc.

consts.mksa_grav_accel

The standard gravitational acceleration on Earth, g.

consts.mksa_solar_mass

The mass of the Sun.

Atomic and Nuclear Physics

consts.mksa_electron_charge

The charge of the electron, e.

consts.mksa_electron_volt

The energy of 1 electron volt, eV.

consts.mksa_unified_atomic_mass

The unified atomic mass, amu.

consts.mksa_mass_electron

The mass of the electron, m_e.

consts.mksa_mass_muon

The mass of the muon, m_μ.

consts.mksa_mass_proton

The mass of the proton, m_p.

consts.mksa_mass_neutron

The mass of the neutron, m_n.

consts.num_fine_structure

The electromagnetic fine structure constant \alpha.

consts.mksa_rydberg

The Rydberg constant, Ry, in units of energy. This is related to
the Rydberg inverse wavelength R_\infty by Ry = h c R_\infty.

consts.mksa_bohr_radius

The Bohr radius, a_0.

consts.mksa_angstrom

The length of 1 angstrom.

consts.mksa_barn

The area of 1 barn.

consts.mksa_bohr_magneton

The Bohr Magneton, μ_B.

consts.mksa_nuclear_magneton

The Nuclear Magneton, μ_N.

consts.mksa_electron_magnetic_moment

The absolute value of the magnetic moment of the electron, μ_e.
The physical magnetic moment of the electron is negative.

consts.mksa_proton_magnetic_moment

The magnetic moment of the proton, μ_p.

consts.mksa_thomson_cross_section

The Thomson cross section, \sigma_T.

consts.mksa_debye

The electric dipole moment of 1 Debye, D.

Measurement of Time

consts.mksa_minute

The number of seconds in 1 minute.

consts.mksa_hour

The number of seconds in 1 hour.

consts.mksa_day

The number of seconds in 1 day.

consts.mksa_week

The number of seconds in 1 week.

Imperial Units

consts.mksa_inch

The length of 1 inch.

consts.mksa_foot

The length of 1 foot.

consts.mksa_yard

The length of 1 yard.

consts.mksa_mile

The length of 1 mile.

consts.mksa_mil

The length of 1 mil (1/1000th of an inch).

Speed and Nautical Units

consts.mksa_kilometers_per_hour

The speed of 1 kilometer per hour.

consts.mksa_miles_per_hour

The speed of 1 mile per hour.

consts.mksa_nautical_mile

The length of 1 nautical mile.

consts.mksa_fathom

The length of 1 fathom.

consts.mksa_knot

The speed of 1 knot.

Printers Units

consts.mksa_point

The length of 1 printer’s point (1/72 inch).

consts.mksa_texpoint

The length of 1 TeX point (1/72.27 inch).

Volume, Area and Length

consts.mksa_micron

The length of 1 micron.

consts.mksa_hectare

The area of 1 hectare.

consts.mksa_acre

The area of 1 acre.

consts.mksa_liter

The volume of 1 liter.

consts.mksa_us_gallon

The volume of 1 US gallon.

consts.mksa_canadian_gallon

The volume of 1 Canadian gallon.

consts.mksa_uk_gallon

The volume of 1 UK gallon.

consts.mksa_quart

The volume of 1 quart.

consts.mksa_pint

The volume of 1 pint.

Mass and Weight

consts.mksa_pound_mass

The mass of 1 pound.

consts.mksa_ounce_mass

The mass of 1 ounce.

consts.mksa_ton

The mass of 1 ton.

consts.mksa_metric_ton

The mass of 1 metric ton (1000 kg).

consts.mksa_uk_ton

The mass of 1 UK ton.

consts.mksa_troy_ounce

The mass of 1 troy ounce.

consts.mksa_carat

The mass of 1 carat.

consts.mksa_gram_force

The force of 1 gram weight.

consts.mksa_pound_force

The force of 1 pound weight.

consts.mksa_kilopound_force

The force of 1 kilopound weight.

consts.mksa_poundal

The force of 1 poundal.

Thermal Energy and Power

consts.mksa_calorie

The energy of 1 calorie.

consts.mksa_btu

The energy of 1 British Thermal Unit, btu.

consts.mksa_therm

The energy of 1 Therm.

consts.mksa_horsepower

The power of 1 horsepower.

Pressure

consts.mksa_bar

The pressure of 1 bar.

consts.mksa_std_atmosphere

The pressure of 1 standard atmosphere.

consts.mksa_torr

The pressure of 1 torr.

consts.mksa_meter_of_mercury

The pressure of 1 meter of mercury.

consts.mksa_inch_of_mercury

The pressure of 1 inch of mercury.

consts.mksa_inch_of_water

The pressure of 1 inch of water.

consts.mksa_psi

The pressure of 1 pound per square inch.

Viscosity

consts.mksa_poise

The dynamic viscosity of 1 poise.

consts.mksa_stokes

The kinematic viscosity of 1 stokes.

Light and Illumination

consts.mksa_stilb

The luminance of 1 stilb.

consts.mksa_lumen

The luminous flux of 1 lumen.

consts.mksa_lux

The illuminance of 1 lux.

consts.mksa_phot

The illuminance of 1 phot.

consts.mksa_footcandle

The illuminance of 1 footcandle.

consts.mksa_lambert

The luminance of 1 lambert.

consts.mksa_footlambert

The luminance of 1 footlambert.

Radioactivity

consts.mksa_curie

The activity of 1 curie.

consts.mksa_roentgen

The exposure of 1 roentgen.

consts.mksa_rad

The absorbed dose of 1 rad.

Force and Energy

consts.mksa_newton

The SI unit of force, 1 Newton.

consts.mksa_dyne

The force of 1 Dyne = 10^{-5} Newton.

consts.mksa_joule

The SI unit of energy, 1 Joule.

consts.mksa_erg

The energy 1 erg = 10^{-7} Joule.

Prefixes

These constants are dimensionless scaling factors.

consts.num_yotta

10^{24}

consts.num_zetta

10^{21}

consts.num_exa

10^{18}

consts.num_peta

10^{15}

consts.num_tera

10^{12}

consts.num_giga

10^9

consts.num_mega

10^6

consts.num_kilo

10^3

consts.num_milli

10^{-3}

consts.num_micro

10^{-6}

consts.num_vsl_nano

10^{-9}

consts.num_pico

10^{-12}

consts.num_femto

10^{-15}

consts.num_atto

10^{-18}

consts.num_zepto

10^{-21}

consts.num_yocto

10^{-24}

Examples

The following program demonstrates the use of the physical constants in
a calculation. In this case, the goal is to calculate the range of
light-travel times from Earth to Mars.

The required data is the average distance of each planet from the Sun in
astronomical units (the eccentricities and inclinations of the orbits
will be neglected for the purposes of this calculation). The average
radius of the orbit of Mars is 1.52 astronomical units, and for the
orbit of Earth it is 1 astronomical unit (by definition). These values
are combined with the MKSA values of the constants for the speed of
light and the length of an astronomical unit to produce a result for the
shortest and longest light-travel times in seconds. The figures are
converted into minutes before being displayed.

module main

import vsl.consts

c := consts.mksa_speed_of_light
au := consts.mksa_astronomical_unit
minutes := consts.mksa_minute // distance stored in meters
r_earth := 1.0 * au
r_mars := 1.52 * au
t_min := (r_mars - r_earth) / c
t_max := (r_mars + r_earth) / c
min := t_min / minutes
max := t_max / minutes
println('light travel time from Earth to Mars:')
println('minimum = ${min} minutes')
println('maximum = ${max} minutes')

will print

light travel time from Earth to Mars:
minimum = 4.3 minutes
maximum = 21.0 minutes

References and Further Reading

The authoritative sources for physical constants are the 2006 CODATA
recommended values, published in the article below. Further
information on the values of physical constants is also available from
the NIST website.

	P.J. Mohr, B.N. Taylor, D.B. Newell, “CODATA Recommended
Values of the Fundamental Physical Constants: 2006”, Reviews of
Modern Physics, 80(2), pp. 633–730 (2008).

 Numerical Differentiation

Numerical Differentiation

This module provides functions for computing numerical derivatives of
functions.

An adaptive algorithm is used to find the best
choice of finite difference and to estimate the error in the derivative.

The development of this module is inspired by the same present in GSL [https://github.com/ampl/gsl]
looking to adapt it completely to the practices and tools present in VSL.

Functions

fn central (f func.Fn, x, h f64) (f64, f64)

This function computes the numerical derivative of the function f
at the point x using an adaptive central difference algorithm with
a step-size of h. The derivative is returned in result and an
estimate of its absolute error is returned in abserr.

The initial value of h is used to estimate an optimal step-size,
based on the scaling of the truncation error and round-off error in the
derivative calculation. The derivative is computed using a 5-point rule
for equally spaced abscissae at x - h, x - h/2, x,
x + h/2, x+h, with an error estimate taken from the difference
between the 5-point rule and the corresponding 3-point rule x-h,
x, x+h. Note that the value of the function at x
does not contribute to the derivative calculation, so only 4-points are
actually used.

fn forward (f func.Fn, x, h f64) (f64, f64)

This function computes the numerical derivative of the function f
at the point x using an adaptive forward difference algorithm with
a step-size of h. The function is evaluated only at points greater
than x, and never at x itself. The derivative is returned in
result and an estimate of its absolute error is returned in
abserr. This function should be used if f(x) has a
discontinuity at x, or is undefined for values less than x.

The initial value of h is used to estimate an optimal step-size,
based on the scaling of the truncation error and round-off error in the
derivative calculation. The derivative at x is computed using an
“open” 4-point rule for equally spaced abscissae at x+h/4,
x + h/2, x + 3h/4, x+h, with an error estimate taken
from the difference between the 4-point rule and the corresponding
2-point rule x+h/2, x+h.

fn backward (f func.Fn, x, h f64) (f64, f64)

This function computes the numerical derivative of the function f
at the point x using an adaptive backward difference algorithm
with a step-size of h. The function is evaluated only at points
less than x, and never at x itself. The derivative is
returned in result and an estimate of its absolute error is
returned in abserr. This function should be used if f(x)
has a discontinuity at x, or is undefined for values greater than
x.

This function is equivalent to calling deriv.forward with a
negative step-size.

References and Further Reading

This work is a spiritual descendent of the Differentiation module in GSL [https://github.com/ampl/gsl].

 Numerical Differentiation

Numerical Differentiation

This module provides functions for computing numerical derivatives of
functions.

An adaptive algorithm is used to find the best
choice of finite difference and to estimate the error in the derivative.

 Probability Distributions algorithms

Probability Distributions algorithms

This module provides functions for computing probability distributions.

 Easing Functions

Easing Functions

This is a pure V module that provides easing functions calculation.

Usage

Use the animate function to apply an easing function over a range of numbers

module main

import vsl.easings

println(easings.animate(easings.bounce_ease_out, 0, 100, 100))

Credits

Based on the works of:

	ScientificC/CMathL [https://github.com/ScientificC/cmathl]

	James Tomasino [https://github.com/jamestomasino/veasing]

	Robert Penner [http://robertpenner.com/easing/]

	George McGinley Smith [http://gsgd.co.uk/sandbox/jquery/easing/]

	James Padolsey [http://james.padolsey.com/demos/jquery/easing/]

	Matt Gallagher [http://cocoawithlove.com/2008/09/parametric-acceleration-curves-in-core.html]

 MPI Basic example

MPI Basic example

This example shows how to use the basic MPI functions in VSL.

Quickstart

	Compile the example with:

v -o mpi_basic_example -prod -cc mpirun main.v

	Run the example with:

$ mpirun -np 2 -H localhost:8 ./mpi_basic_example
Test MPI 01
Hello from rank 0
The world has 2 processes
Hello from rank 1
The world has 2 processes
ID: 0 - Assertion: true
ID: 0 - Assertion: true
ID: 1 - Assertion: true
ID: 1 - Assertion: true

 MPI Broadcast example

MPI Broadcast example

This example shows how to use the basic MPI functions in VSL.

Quickstart

	Compile the example with:

v -o mpi_bcast_example -prod -cc mpirun main.v

	Run the example with:

$ mpirun -np 2 -H localhost:8 ./mpi_bcast_example
Hello from rank 0 of 2 processes
Hello from rank 1 of 2 processes
Communicator rank 1 of 2 processors
Communicator rank 0 of 2 processors
 1 bcast_from_root success
 0 bcast_from_root success
 0 reduce_sum success
 1 allreduce_max success
 0 allreduce_max success

 Basic VCL OpenCL Example

Basic VCL OpenCL Example

This example shows how to use VCL with OpenCL as backend.

Quickstart

v run main.v

 Creating fractals with VCL

Creating fractals with VCL

This example shows how to create fractals with VCL using OpenCL as backend.

Quickstart

v run main.v

 Basic Image Processing Example

Basic Image Processing Example

This example shows how to do basic image processing with VCL using OpenCL as backend.

Quickstart

v run main.v

 Fast Fourier Transform

Fast Fourier Transform

The fft package is a wrapper of the C language version
of PocketFFT [https://github.com/mreineck/pocketfft] library designed
to support FFT of real to complex and complex to real (arrays).

The result of a real-to-complex transform, because of mathematical symmetry of the
result, is stored in the original input array rather than 2x the space.

The output is the two real values bracketing the complex pairs
of conjugate negative frequencies: r0 r1 i1 r2 i2 r3 i3 … rx

where r0 + i0 is the first complex result, r1 - i1 is the second, and so on
until rx + i0 (where x is n/2) is the last. (Note the minus signs.)

The positive frequencies are the same as the negative frequencies in reverse
order. See the reference
for FFTW [https://www.fftw.org/fftw3.pdf] for further examples of embeddings.

 <no title>

 Copyright (C) 2010-2019 Max-Planck-Society
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 PocketFFT

PocketFFT

This is a heavily modified implementation of FFTPack [1,2], with the following
advantages:

	strictly C99 compliant

	more accurate twiddle factor computation

	very fast plan generation

	worst case complexity for transform sizes with large prime factors is
N*log(N), because Bluestein’s algorithm [3] is used for these cases.

License

3-clause BSD (see LICENSE.md)

Some code details

Twiddle factor computation:

	making use of symmetries to reduce number of sin/cos evaluations

	all angles are reduced to the range [0; pi/4] for higher accuracy

	an adapted implementation of sincospi() is used, which actually computes
sin(x) and (cos(x)-1).

	if n sin/cos pairs are required, the adjusted sincospi() is only called
2*sqrt(n) times; the remaining values are obtained by evaluating the
angle addition theorems in a numerically accurate way.

Parallel invocation:

	Plans only contain read-only data; all temporary arrays are allocated and
deallocated during an individual FFT execution. This means that a single plan
can be used in several threads at the same time.

Efficient codelets are available for the factors:

	2, 3, 4, 5, 7, 11 for complex-valued FFTs

	2, 3, 4, 5 for real-valued FFTs

Larger prime factors are handled by somewhat less efficient, generic routines.

For lengths with very large prime factors, Bluestein’s algorithm is used, and
instead of an FFT of length n, a convolution of length n2 >= 2*n-1
is performed, where n2 is chosen to be highly composite.

[1] Swarztrauber, P. 1982, Vectorizing the Fast Fourier Transforms
(New York: Academic Press), 51

[2] https://www.netlib.org/fftpack/

[3] https://en.wikipedia.org/wiki/Chirp_Z-transform

 Geometry algorithms and structures

Geometry algorithms and structures

This package provides some functions to help with the solution of geometry problems.
It also includes some routines loosely related with geometry.

 Graph theory structures and algorithms

Graph theory structures and algorithms

This package implements algorithms for handling graphs and solving problems such as shortest path
finding. It also implements an algorithm to solve the assignment problem.

Graph representation

In graph, directed graphs are mainly defined by edges. A weight can be assigned to each edge as
well. For example, the graph below:

 [10]
 0 ––––––––→ 3 numbers in parentheses
 | (1) ↑ indicate edge ids
 [5]|(0) |
 | (3)|[1]
 ↓ (2) | numbers in brackets
 1 ––––––––→ 2 indicate weights
 [3]

is defined with the following code:

module main

import vsl.graph

edges := [[0, 1], [0, 3], [1, 2], [2, 3]]
weights_e := [5.0, 10.0, 3.0, 1.0]
verts := [][]f64{}
weights_v := []f64{}
g := graph.new_graph(edges, weights_e, verts, weights_v)
// print distance matrix
print(g.str_dist_matrix())

Vertex coordinates can be specified as well. Furthermore, weights can be assigned to vertices. These
are useful when computing distances, for example.

Floyd-Warshall algorithm to compute shortest paths

The shortest_paths method of Graph computes the shortest paths using the Floyd-Warshall
algorithm. For example, the graph above has the following distances matrix:

 [10]
 0 ––––––→ 3 numbers in brackets
 | ↑ indicate weights
[5] | | [1]
 ↓ |
 1 ––––––→ 2
 [3] ∞ means that there are no
 connections from i to j
graph: j= 0 1 2 3
 ----------- i=
 0 5 ∞ 10 | 0 ⇒ w(0→1)=5, w(0→3)=10
 ∞ 0 3 ∞ | 1 ⇒ w(1→2)=3
 ∞ ∞ 0 1 | 2 ⇒ w(2→3)=1
 ∞ ∞ ∞ 0 | 3

After running the shortest_paths command,
paths from source (s) to destination (t) can be extracted
with the path method.

Example: Small graph

 [10]
 0 ––––––––→ 3 numbers in parentheses
 | (1) ↑ indicate edge ids
 [5]|(0) |
 | (3)|[1]
 ↓ (2) | numbers in brackets
 1 ––––––––→ 2 indicate weights
 [3]

module main

import vsl.graph

// initialise graph
edges := [[0, 1], [0, 3], [1, 2], [2, 3]]
weights_e := [5.0, 10.0, 3.0, 1.0]
verts := [][]f64{}
weights_v := []f64{}
g := graph.new_graph(edges, weights_e, verts, weights_v)
// compute paths
g.shortest_paths(.fw)
// print shortest path from 0 to 2
print(g.path(0, 2))
// print shortest path from 0 to 3
print(g.path(0, 3))
// print distance matrix
print(g.str_dist_matrix())

 HDF5

HDF5

The functions described in this chapter will read or write data to
a file in the HDF5 [https://hdfgroup.org] format. These contain
datasets together with a set of attributes for each dataset.

Datasets are arranged in a heirarchical name space similar to Unix
file system. Each namespace is called a group. Datasets are
stored in a group in an area of the file called a dataspace.

Supported Features

	Datasets consisting of a vector ([]i64, []f64, etc).

	Datasets consisting of a 2-d array ([][]u8, [][]i16, etc).

	Datasets consisting of a 3-d array ([][][]u32, [][][]f32, etc).

	Any number of attributes for each dataset (int, []f64, string, etc).
Attributes can be scalars or vectors. These are often metadata
of the dataset describing how it was acquired or created.

Unsupported Features - Planned

	Writing to groups other than / (which is the default)

	Datasets of arrays of strings.

	Compound data structures (akin to struct).

	Images or tables.

	Compression.

	Distributed datasets (pointers to other HDF5 files).

	Parallel reading or writing.

References and Further Reading

See the HDF5 [https://hdfgroup.org] website for documentation and examples
in C or Fortran.

 TODO

TODO

	[] Fix the memory consumption for writing 2-d or 3-d arrays: currently this uses
the flatten() function which requires a temporary copy of the data.

	[] Add more examples.

	[] Add more datatypes, especially images.

	[] Consider adding a file open-for-update function.

	[] Add automatic group paths.

 Iterator Tools

Iterator Tools

This module provides two different ways of managing combinatorics.
Let see an example for combinations.

Fully formed array of all Combinations

// combinations will return an array of all length `r` combinations of `data`
// While waiting on https://github.com/vlang/v/issues/7753 to be fixed, the function
// assumes f64 array input. Will be easy to change to generic later
pub fn combinations(data []f64, r int) [][]f64

Lazy generation

This case is optimal to generate combinations in a lazy way, optimizing memory use:

// new_combinations_iter will return an iterator that allows
// lazy computation for all length `r` combinations of `data`
pub fn new_combinations_iter(data []f64, r int) CombinationsIter

// next will return next combination if possible
pub fn (mut o CombinationsIter) next() ?[]f64

 Natural Language Processing Tools

Natural Language Processing Tools

This submodule offers tools for Natural Language Processing.

Examples

Here [https://github.com/vlang/vsl/tree/main/examples] you can see a
full set of examples.

 Message Passing Interface for parallel computing

Message Passing Interface for parallel computing

The mpi package is a simplified wrapper to the OpenMPI [https://www.open-mpi.org] C library designed
to support algorithms for parallel computing.

This library allows a program to support parallel computations over the network.
This is otherwise known as a single-program multiple-data (SPMD) architecture.

Requirements

	On ubuntu, you can install the OpenMPI library with:

sudo apt install libopenmpi-dev

	On Arch Linux, you can install the OpenMPI library with:

sudo pacman -S openmpi

	On macOS, you can install the OpenMPI library with:

brew install openmpi

	On Windows, you can install the OpenMPI library with:

choco install openmpi

	On FreeBSD, you can install the OpenMPI library with:

pkg install openmpi

Features

The mpi routines supported include:

	start() [deprecated]

	initialize()

	finalize()

	stop() [deprecated]

	world_rank() int

	world_size() int

	is_on() bool

	new_communicator(ranks []int) ?&Communicator

The methods for the Communicator support i32, u32, i64, u64, f32 and f64
data types. These allow exchange of arrays of data between processors
or broadcast from the first processor (the root node with rank == 0).

A program must issue a send (on one rank) and matching receive on another
rank or all ranks, depending on the nature of the method. Use barrier()
to ensure all ranks are synchronized at that point.

Support is provided for Linux and the BSDs.

Once you have created a Communicator, you can use these methods,
where the <type> is one of the above i32, u32, i64, u64, f32 or f64:

Method	Result
————————————————————–	————————————————-
comm.rank()	Rank of the processor within the World or group
comm.size()	Size of the list of processors
comm.abort()	Abort the MPI program
comm.barrier()	Resynchronize all processors to this point
comm.send_i32(vals []i32, to_rank int)	Send an array to one rank
comm.recv_i32(vals []i32, from_rank int)	Receive array from one rank
comm.send_u32(...)	As above for unsigned 32-bit integers
comm.send_i64(...)	As above for signed 64-bit integers
comm.send_u64(...)	As above for unsigned 64-bit integers
comm.send_f32(...)	As above for 32-bit floats
comm.send_f64(...)	As above for 64-bit floats
comm.send_one_<type>(val <type>, to_rank int)	Send one value to one rank
comm.recv_one_<type>(from_rank int) <type>	Returns one value from one rank
comm.bcast_from_root_<type>(vals []<type>)	Copy the values to all processors
comm.reduce_sum_<type>(mut dest []<type>, orig []<type>)	Sum orig array elements to dest on rank 0
comm.all_reduce_sum_<type>(mut dest []<type>, orig []<type>)	Sum orig array elements to dest on all ranks
comm.reduce_min_<type>(mut dest []<type>, orig []<type>)	Minimize orig array elements to dest on rank 0
comm.all_reduce_min_<type>(mut dest []<type>, orig []<type>)	Minimize orig array elements to dest on all ranks
comm.reduce_max_<type>(mut dest []<type>, orig []<type>)	Maximize orig array elements to dest on rank 0
comm.all_reduce_max_<type>(mut dest []<type>, orig []<type>)	Maximize orig array elements to dest on all ranks

 noise

noise

This module aims to to implement noise algorithms.

It uses the rand module in vlib to generate random numbers,
so you may seed the generator as you see fit.

 VSL Plot

VSL Plot

This is in a very early stage of development so issues are to be expected.
The lack of features is the major problem right now, but these are slowly but
surely going to be added. If you find any problem, please file an issue and
we will try to solve it as soon as possible. Any suggestion is welcome!

This library implements high-level functions to generate plots and drawings.
Although we use Python/Plotly, the goal is to provide a convenient
V library that is different than Plotly. The difference happens
because we want convenience for the V developer while getting the
fantastic quality of Plotly grinning.

Internally, we use Plotly via a Python 3 script. First, we generate a
JSON files in a directory under $VMODULES/vsl/plot, and then
we call python3 using V’s os.execute. The JSON file is then read
by Plotly and the plot is generated.

vsl.plot follows the structure of
Plotly’s graph_objects [https://plotly.com/python/graph-objects/].
Check the examples folder and compare it to Plotly’s Python examples
for a better understanding.

Dependencies

	Python 3 [https://www.python.org/]

Supported Graph Types

	Bar

	Heatmap

	Histogram

	Pie

	Scatter

	Scatter 3D

	Surface

Examples

Bar plot

bar plot example [https://github.com/vlang/vsl/blob/main/examples/plot_bar]

Output

 Polynomials

Polynomials

This chapter describes functions for evaluating and solving polynomials.
There are routines for finding real and complex roots of quadratic and
cubic equations using analytic methods. An iterative polynomial solver
is also available for finding the roots of general polynomials with real
coefficients (of any order). The functions are declared in the module vsl.poly.

Polynomial Evaluation

The functions described here evaluate the polynomial

P(x) = c[0] + c[1] x + c[2] x^2 + . . . + c[len-1] x^(len-1)

using Horner’s method for stability.

fn eval(c []f64, x f64) f64

This function evaluates a polynomial with real coefficients for the real variable x.

fn eval_derivs(c []f64, x f64, lenres u64) []f64

This function evaluates a polynomial and its derivatives storing the
results in the array res of size lenres. The output array
contains the values of d^k P(x)/d x^k for the specified value of
x starting with k = 0.

Quadratic Equations

fn solve_quadratic(a f64, b f64, c f64) []f64

This function finds the real roots of the quadratic equation,

a x^2 + b x + c = 0

The number of real roots (either zero, one or two) is returned, and
their locations are are returned as [x0, x1]. If no real roots
are found then [] is returned. If one real root
is found (i.e. if a=0) then it is are returned as [x0]. When two
real roots are found they are are returned as [x0, x1] in
ascending order. The case of coincident roots is not considered
special. For example (x-1)^2=0 will have two roots, which happen
to have exactly equal values.

The number of roots found depends on the sign of the discriminant
b^2 - 4 a c. This will be subject to rounding and cancellation
errors when computed in double precision, and will also be subject to
errors if the coefficients of the polynomial are inexact. These errors
may cause a discrete change in the number of roots. However, for
polynomials with small integer coefficients the discriminant can always
be computed exactly.

Cubic Equations

fn solve_cubic(a f64, b f64, c f64) []f64

This function finds the real roots of the cubic equation,

x^3 + a x^2 + b x + c = 0

with a leading coefficient of unity. The number of real roots (either
one or three) is returned, and their locations are returned as [x0, x1, x2].
If one real root is found then only [x0]
is returned. When three real roots are found they are returned as
[x0, x1, x2] in ascending order. The case of
coincident roots is not considered special. For example, the equation
(x-1)^3=0 will have three roots with exactly equal values. As
in the quadratic case, finite precision may cause equal or
closely-spaced real roots to move off the real axis into the complex
plane, leading to a discrete change in the number of real roots.

 Quaternions

Quaternions

The functions provided by this module add support for quaternions.
The algorithms take care to avoid unnecessary intermediate underflows
and overflows, allowing the functions to be evaluated over as much of
the quaternion plane as possible.

 One Dimensional Root-Finding

One Dimensional Root-Finding

The module vsl.roots contains functions for the root finding methods and related declarations.

 Docs

 V Computing Language

V Computing Language

VCL is a high level way of writting programs with OpenCL using V.
These are highly opinionated OpenCL bindings for V. It tries to make GPU computing easy,
with some sugar abstraction, V’s concurency and channels.

:———:	:———————————————————————————————————————:	:————————————————————————————-:	:—————————————————————————————————:
[image: ../_images/sierpinski_triangle.png]sierpinski_triangle	[image: ../_images/mandelbrot_blue_red_black.png]mandelbrot_blue_red_black	[image: ../_images/julia.png]julia	[image: ../_images/mandelbrot_basic.png]mandelbrot_basic
[image: ../_images/35e78c76ad1549237e303b934b300e92dbad8194.png]mandelbrot_pseudo_random_colors	[image: ../_images/sierpinski_triangle2.png]sierpinski_triangle2	[image: ../_images/julia_set.png]julia_set	[image: ../_images/julia_basic.png]julia_basic

Using custom OpenCL headers

IMPORTANT: Using a different OpenCL header version than the one used by the OpenCL library
can cause problems. If you are using a custom OpenCL header, make sure that it is
compatible with the OpenCL library you are using.

NOTE: Darwin systems will look for the header file at <OpenCL/opencl.h> while any other
systems will look for the header file at <CL/cl.h>.

By default VCL uses the OpenCL headers from the system path and all the known
locations for OpenCL headers (like /usr/include and /usr/local/include) and load the first
header it finds. If you want to use a specific OpenCL header,
you can add the -I flag into your V program with the path to the headers directory.

#flag -I/custom/path/to/opencl/headers

or at compile time:

v -I/custom/path/to/opencl/headers my_program.v

You can also link or move the headers directory into VCL’s source directory. For example:

for darwin systems
ln -s /custom/path/to/opencl/headers ~/.vmodules/vcl/OpenCL

or for any other system you can do
ln -s /custom/path/to/opencl/headers ~/.vmodules/vcl/CL

or, you can copy the headers directory into VCL’s source directory.
For example you can clone the OpenCL-Headers repository and copy the headers as follows:

git clone https://github.com/KhronosGroup/OpenCL-Headers /tmp/OpenCL-Headers

for darwin systems
cp -r /tmp/OpenCL-Headers/CL ~/.vmodules/vcl/OpenCL

or for any other system you can do
cp -r /tmp/OpenCL-Headers/CL ~/.vmodules/vcl/CL

Loading OpenCL dynamically

By default VCL uses OpenCL loading the library statically. If you want to use OpenCL
dynamically, you can use the -d dlopencl flag.

By default it will look for the OpenCL library in the system path and all the known
locations for OpenCL libraries (like /usr/lib and /usr/local/lib) and load the first
library it finds. If you want to use a specific OpenCL library,
you can declare the environment variable VCL_LIBOPENCL_PATH with
the path to the library. Multiple paths can be separated by :.

For example, if you want to use the OpenCL library from the NVIDIA CUDA Toolkit, you can
do the following:

export VCL_LIBOPENCL_PATH=/usr/local/cuda/lib64/libOpenCL.so

 V Linear Algebra System

V Linear Algebra System

This package implements BLAS and LAPACKE functions. It provides different backends:

Backend	Description	Status	Compilation Flags
——–	——	——-	—————–
VLAS	Pure V implementation	WIP	-d vlas
OpenBLAS	OpenBLAS is an optimized BLAS library based on https://github.com/xianyi/OpenBLAS. Check the section OpenBLAS Backend for more information.	Working	-d cblas
LAPACKE	LAPACKE is a C interface to the LAPACK linear algebra routines	Working	-d lapacke

Therefore, its routines are a little more lower level than the ones in the package vsl.la.

OpenBLAS Backend

Use the flag -d cblas to use the OpenBLAS backend.

Install dependencies

Debian/Ubuntu GNU Linux

libopenblas-dev is not needed when using the pure V backend.

sudo apt-get install -y --no-install-recommends \
 gcc \
 gfortran \
 libopenblas-dev

Arch Linux/Manjaro GNU Linux

The best way of installing OpenBlas is using
openblas-lapack [https://aur.archlinux.org/packages/openblas-lapack/].

yay -S openblas-lapack

or

git clone https://aur.archlinux.org/openblas-lapack.git /tmp/openblas-lapack
cd /tmp/openblas-lapack
makepkg -si

macOS

brew install openblas

LAPACKE Backend

Use the flag -d lapacke to use the LAPACKE backend.

Install dependencies

Debian/Ubuntu GNU Linux

sudo apt-get install -y --no-install-recommends \
 gcc \
 gfortran \
 liblapacke-dev

Arch Linux/Manjaro GNU Linux

The best way of installing LAPACKE is using
openblas-lapack [https://aur.archlinux.org/packages/openblas-lapack/].

yay -S openblas-lapack

or

git clone https://aur.archlinux.org/openblas-lapack.git /tmp/openblas-lapack
cd /tmp/openblas-lapack
makepkg -si

_images/mandelbrot_basic.png

_images/mandelbrot_blue_red_black.png

_images/julia_basic.png

_images/julia_set.png

_images/sierpinski_triangle.png

_images/sierpinski_triangle2.png

_static/ajax-loader.gif

_images/35e78c76ad1549237e303b934b300e92dbad8194.png

_images/julia.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comm